Correlational Research

- Correlational research is used to describe the relationship between two or more naturally occurring variables.
- Is age related to political conservatism?
- Are highly extraverted people less afraid of rejection than less extraverted people?
- Is depression correlated with hypochondriasis?
- Is I.Q. related to reaction time?

Correlational Research Studies

- Describe a linear relationship between variables
- Do not imply a cause-and-effect relationship
- Do imply that variables share something in common

Why Use a Correlational Design?

- Some factors are impossible to manipulate experimentally
 - Personality
 - Demographic categories
- It is unethical to manipulate some variables
 - Severe illness
 - Brain injury
Why Use a Correlational Design?

- Most variables that cannot be studied experimentally can be studied correlationally
 - Variables are measured
 - Relationship among variables is assessed
- Correlational designs cannot determine causality
 - But can rule out whether two variables covary
 - So can show that one variable does not cause another

A Note on Terminology

In correlational research

- the terms predictor variable and criterion variable are used to describe the variables
 - The terms IV and DV may be used but do not have the same meaning as when used in true experiments
 - In correlational research, independent variable is not manipulated
 - There is no presumption that dependent variable "depends on" the independent variable, only that a relationship exists
 - Therefore, one cannot draw causal conclusions from correlational research

Assumptions of Correlational Statistics: Linearity

- Correlational analysis assumes that the relationship between the independent and dependent variables is linear
 - Can be graphed as a straight line
- If relationship between variables is nonlinear, correlation coefficient will be misleading
 - Curvilinear relationships have a correlational coefficient of zero

Assumptions of Correlational Statistics: Linearity

- Before correlational analyses are conducted, one should plot the relationship between the variables
- If relationship is nonlinear, correlational analyses are not appropriate
Assumptions of Correlational Statistics: Additivity

• For correlational analyses with more than one IV, it is assumed that the relationship is additive
 • People’s scores on DV can be predicted by an equation that sums their weighted scores on the IVs
• It is also assumed that there are no interactions among the IVs

CORRELATION COEFFICIENT

• Expresses degree of linear relatedness between two variables
• Varies between −1.00 and +1.00
• Strength of relationship is
 • Indicated by absolute value of coefficient
 • Stronger as shared variance increases
• Pearson correlation coefficient (r) is the most commonly used measure of correlation

Correlation Coefficient

• The magnitude or numerical value of a correlation expresses the strength of the relationship between the two variables.
 • When r = .00, the variables are not related.
 • A correlation of .78 indicates that the variables are more strongly related than does a correlation of .30.
 • Magnitude is unrelated to the sign of r; two variables with a correlation of .78 are just as strongly related as two variables with a correlation of -.78.

Correlation Coefficient

• The sign of a correlation coefficient indicates the direction of the relationship between the two variables
 • Variables can be either positively or negatively related.
 • Positive correlation – a direct, positive relationship between two variables; as one variable increases, the other variable increases
 • Negative correlation – an inverse, negative relationship between two variables; as one variable increases, the other variable decreases
TWO TYPES OF CORRELATION

<table>
<thead>
<tr>
<th>If X...</th>
<th>And Y...</th>
<th>The correlation is</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases in value</td>
<td>Increases in value</td>
<td>Positive or direct</td>
<td>The taller one gets (X), the more one weighs (Y).</td>
</tr>
<tr>
<td>Decreases in value</td>
<td>Decreases in value</td>
<td>Positive or direct</td>
<td>The fewer mistakes one makes (X), the fewer hours of remedial work (Y) one participates in.</td>
</tr>
<tr>
<td>Increases in value</td>
<td>Decreases in value</td>
<td>Negative or inverse</td>
<td>The better one behaves (X), the fewer in-class suspensions (Y) one has.</td>
</tr>
<tr>
<td>Decreases in value</td>
<td>Increases in value</td>
<td>Negative or inverse</td>
<td>The less time one spends studying (X), the more errors one makes on the test (Y).</td>
</tr>
</tbody>
</table>

Other Indices of Correlation

- **Spearman rank-order correlation** – used when variables are measured on an ordinal scale (the numbers reflect the rank ordering of participants on some attribute)
- **Phi coefficient** – used when both variables are dichotomous
- **Point-biserial correlation** – used when only one of the variables is dichotomous

WHAT CORRELATION COEFFICIENTS LOOK LIKE

- **Pearson product moment correlation**
 - \(r_{xy} \)
 - Correlation between variables x and y
- **Scattergram representation**
 1. Set up x and y axes
 2. Represent one variable on x axis and one on y axis
 3. Plot each pair of x and y coordinates

When points are closer to a straight line, the correlation becomes stronger
As slope of line approaches 45°, correlation becomes stronger
When $r = .00$

- A correlation of .00 indicates that there is no linear relationship between the two variables.
- However, there could be a curvilinear relationship between them.

Coefficient of Determination

- The correlation coefficient, r, is on a ratio scale so we can’t add, subtract, multiply, or divide correlation coefficients or compare them directly.
- Therefore, we must square r to obtain the coefficient of determination.
- The coefficient of determination is on a ratio scale of measurement and is easily interpretable.

Coefficient of Determination

- Is the square of the correlation coefficient.
- Indicates the proportion of variance in one variable that is accounted for by another variable.
 - The correlation between children’s and parents’ neuroticism scores is .25. If we square this correlation (.0625), the coefficient of determination tells us that 6.25% of the variance in children’s neuroticism scores can be accounted for by their parent’s scores.
Statistical Significance of r

- A correlation coefficient is statistically significant when the correlation calculated on a sample has a very low probability of being .00 in the population from which the sample came.

Correlational Hypotheses

- Directional Hypothesis – predicts the direction of the correlation (i.e., positive or negative)
- Nondirectional Hypothesis – predicts that two variables will be correlated but does not specify whether the correlation will be positive or negative

Statistical Significance of r is Affected by Three Things

1. Sample size
2. Magnitude of the correlation
3. How careful you want to be not to draw an inaccurate conclusion about whether the correlation is .00

Attenuation

- Shrinking of the observed correlation relative to the true score correlation
- Example:
 - True score correlation = 0.40
 - Reliability of two measures = 0.75
 - Maximum possible observed correlation = 0.30
Factors Affecting the Correlation Coefficient

Restriction in range: Occurs when the scores of one or both variables in a sample have a range of values that is less than the range of scores in the population
• Reduces the observed correlation

Factors That Distort Correlation Coefficients

3. Reliability of a Measure -- the less reliable a measure is, the lower its correlations with other measures will be.

If the true correlation between neuroticism in children and in their parents is .45, but you use a scale that is unreliable, the obtained correlation will not be .45 but rather near .00.

Hypothetical Self-Reported Masculinity and Femininity

<table>
<thead>
<tr>
<th>Gender</th>
<th>Masc</th>
<th>Fem</th>
<th>Gender</th>
<th>Masc</th>
<th>Fem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>7</td>
<td>1</td>
<td>Female</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>4</td>
<td>Female</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>3</td>
<td>Female</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>2</td>
<td>Female</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Male</td>
<td>4</td>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>1</td>
<td>Female</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>1</td>
<td>Female</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>3</td>
<td>Female</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Ratings on 7-point scales where 1 = not at all and 7 = very
Hypothetical Self-Reported Masculinity and Femininity

- With all participants included, ratings of masculinity and femininity are negatively correlated ($r = -0.88$)
- With only male participants, $r = -0.42$
- Range is restricted on both measures when only male participants are assessed

Factors Affecting the Correlation Coefficient

Outliers: Extreme scores
- Usually defined as scores more than three standard deviations above/below mean
- Can artificially lower a correlation
- If outliers are present, the researcher can:
 - mathematically transform the data
 - omit outliers
- Which option to choose depends on the probable meaning of the outliers
Factors Affecting the Correlation Coefficient

Subgroup differences: The participant sample on which a correlation is based contains two or more subgroups
• The combined group correlation will not accurately reflect the subgroup correlations if
 • the correlation differs within the subgroups
 • the mean scores differ within the subgroups

To test for subgroup differences, one should examine:
• the means and standard deviations of subgroups
• the correlations within subgroups
One can also plot the subgroups’ scores on variables in single scatterplot

Hypothetical Self-Reported Masculinity and Femininity

<table>
<thead>
<tr>
<th>Gender</th>
<th>Masc</th>
<th>Fem</th>
<th>Gender</th>
<th>Masc</th>
<th>Fem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>7</td>
<td>1</td>
<td>Female</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>4</td>
<td>Female</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>3</td>
<td>Female</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>2</td>
<td>Female</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Male</td>
<td>4</td>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>1</td>
<td>Female</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>1</td>
<td>Female</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>3</td>
<td>Female</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Ratings on 7-point scales where 1 = not at all and 7 = very

Hypothetical Ratings of Masculinity and Femininity

<table>
<thead>
<tr>
<th>Gender</th>
<th>Masc</th>
<th>Fem</th>
<th>Gender</th>
<th>Masc</th>
<th>Fem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>5.6</td>
<td>0.97</td>
<td>Female</td>
<td>2.1</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Mean</th>
<th>SD</th>
<th>r_MF</th>
<th>Gender</th>
<th>Mean</th>
<th>SD</th>
<th>r_MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>5.6</td>
<td>0.97</td>
<td>-0.4</td>
<td>Female</td>
<td>2.1</td>
<td>0.99</td>
<td>-0.7</td>
</tr>
<tr>
<td>Male</td>
<td>5.6</td>
<td>0.97</td>
<td>-0.4</td>
<td>Female</td>
<td>2.1</td>
<td>0.99</td>
<td>-0.7</td>
</tr>
<tr>
<td>Male</td>
<td>5.6</td>
<td>0.97</td>
<td>-0.4</td>
<td>Female</td>
<td>2.1</td>
<td>0.99</td>
<td>-0.7</td>
</tr>
<tr>
<td>Male</td>
<td>5.6</td>
<td>0.97</td>
<td>-0.4</td>
<td>Female</td>
<td>2.1</td>
<td>0.99</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

• The means and standard deviations differ for male and female participants
• The correlation between masculinity and femininity is stronger for female participants
Multifaceted Constructs

Constructs that are composed of two or more subordinate components

- Each component can be distinguished from the others and measured separately
- Components are distinguishable even though they are related to each other both logically and empirically

It is important to determine whether a construct is multifaceted or multidimensional

- Components of multidimensional constructs are not related to one another
- Tells you whether or not to combine facets into overall index

Facets should *not* be combined if:

- they are theoretically or empirically related to different DVs or different facets of a DV
- the theory of the construct predicts an interaction among the facets
- it is simply more convenient to do so

When facets are combined into general index, useful information is lost

- Cannot separately test the relationships of the facets to their appropriate DVs
- So, you should not combine facets unless you are certain that the combined score and the scores on all facets have same relation to DV
Facets can be combined in some circumstances, such as
• when the researcher is interested in the latent variable represented by the facets
• a latent variable is unmeasured and represented by the combination of several operational definitions of a construct

One should test whether latent variable is more important in relation to DV than any of its facets
• If so, it should be a better predictor of the DV
• Also, in some cases, it is better to use statistics specifically designed to deal with latent variables

Facets can also be combined when, compared to the facets, the latent variable is
• more important
• more interesting
• represents a more appropriate level of abstraction
Decision is based on theory of interest
• Note that theorists may disagree about what constitutes an appropriate level of abstraction of a construct

Guidelines for Correlational Research
• Use only the most reliable measures available
• Look for restricted range
 • Check the ranges of the scores for your sample against published norms
• Plot the scores for the subgroups and the combined group before computing r
Guidelines for Correlational Research

- Compute subgroup correlations and means
- When using multifaceted constructs, avoid combining facets unless there is a good reason to do so

Correlation Coefficient

- r is an index of the relationship between two variables
 - indicates the accuracy with which scores on one variable can predict the other
 - Prediction is assessed by bivariate regression
 - An equation is developed to predict one variable (X) from the other (Y)

Bivariate Regression

Equation takes the form of: $Y = a + bX$, where

- a is the intercept
 - the value of Y when X is zero
- b is the slope
 - the amount of change in Y for each unit change in X

Differences in Correlations

- Do women and men differ in their self-reported masculinity and femininity?
- Can be tested with Fisher’s z transformation
Differences in Correlations

• Note that a lack of difference does not necessarily mean the relationship between the variables is the same
 • The slope may differ for subgroups even if \(r \) does not
 • However, predictions may be equally accurate for subgroups
• This situation occurs because \(r \) is a standardized index
 • \(X \) and \(Y \) scores are transformed to have mean of 0 and \(SD \) of 1
 • Slopes are unstandardized

Partial Correlation Analysis

• Examines the extent to which the correlation between two variables (\(X \) and \(Y \)) can be accounted for by their mutual correlation with an extraneous variable (\(Z \))
 • That is, \(Z \) is correlated with both \(X \) and \(Y \)
 • Tests what the correlation of \(X \) and \(Y \) would be if \(Z \) were not also correlated with them

Partial Correlation Analysis

A partial correlation (\(pr \))

• shows what the relationship between \(X \) and \(Y \) would be if all research participants had the same score on \(Z \)
• is interpreted the same way as the zero order correlation coefficient
 • \(pr \) represents the strength of the relationship when the effect of \(Z \) is removed or held constant

Partial Correlation Analysis

• The following slide describes the results of Feather’s (1985) study of the correlation between masculinity and depression if self-esteem is controlled
Zero-Order Correlations

<table>
<thead>
<tr>
<th></th>
<th>Masculinity</th>
<th>Self-Esteem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td>−0.26*</td>
<td>−0.52*</td>
</tr>
<tr>
<td>Self-esteem</td>
<td>0.67*</td>
<td></td>
</tr>
</tbody>
</table>

Partial Correlations

<table>
<thead>
<tr>
<th>Correlation of</th>
<th>Controlling for</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masculinity and Depression</td>
<td>Self-esteem</td>
<td>0.14</td>
</tr>
<tr>
<td>Masculinity and Self-esteem</td>
<td>Depression</td>
<td>0.64*</td>
</tr>
<tr>
<td>Depression and Self-esteem</td>
<td>Masculinity</td>
<td>−0.48*</td>
</tr>
</tbody>
</table>

Source: Feather, 1985

*p<0.001

Partial Correlation Analysis

- Results show the correlation between masculinity and depression becomes nonsignificant when self-esteem is controlled.
- Self-esteem and depression is virtually unaffected when masculinity is controlled.
- Suggests the relationship between masculinity and depression can be accounted for by masculinity’s correlation with self-esteem.
- The masculinity-depression relationship is spurious.

AN EXAMPLE OF MORE THAN TWO VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>Grade</th>
<th>Reading</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>1.00</td>
<td>.321</td>
<td>.039</td>
</tr>
<tr>
<td>Reading</td>
<td>.321</td>
<td>1.00</td>
<td>.605</td>
</tr>
<tr>
<td>Math</td>
<td>.039</td>
<td>.605</td>
<td>1.00</td>
</tr>
</tbody>
</table>

INTERPRETING THE PEARSON CORRELATION COEFFICIENT

- “Eyeball” method

<table>
<thead>
<tr>
<th>Correlations between</th>
<th>Are said to be</th>
</tr>
</thead>
<tbody>
<tr>
<td>± .8 and 1.0</td>
<td>Very strong</td>
</tr>
<tr>
<td>± .6 and .8</td>
<td>Strong</td>
</tr>
<tr>
<td>± .4 and .6</td>
<td>Moderate</td>
</tr>
<tr>
<td>± .2 and .4</td>
<td>Weak</td>
</tr>
<tr>
<td>± 0 and .2</td>
<td>Very weak</td>
</tr>
</tbody>
</table>
INTERPRETING THE PEARSON CORRELATION COEFFICIENT

- Coefficient of determination
 - Squared value of correlation coefficient
 - Proportion of variance in one variable explained by variance in the other
- Coefficient of alienation
 - 1 – coefficient of determination
 - Proportion of variance in one variable unexplained by variance in the other

RELATIONSHIP BETWEEN CORRELATION COEFFICIENT AND COEFFICIENT OF DETERMINATION

<table>
<thead>
<tr>
<th>If (r_{xy}) Is And (r_{xy}^2) Is</th>
<th>Then the Change From</th>
<th>Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.04</td>
<td>1 t o 2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.09</td>
<td>2 t o 3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.16</td>
<td>3 t o 4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.25</td>
<td>4 t o 5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.36</td>
<td>5 t o 6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.49</td>
<td>6 t o 7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.64</td>
<td>7 t o 8</td>
</tr>
<tr>
<td>0.9</td>
<td>0.81</td>
<td>8 t o 9</td>
</tr>
</tbody>
</table>

- The increase in the proportion of variance explained is not linear

MULTIPLE REGRESSION ANALYSIS (MRA)

- Extends simple and partial correlations to situations in which there are more than two IVs
- Used for two purposes
 1. To derive an equation that predicts scores on some criterion variable from a set of predictor variables
 2. To explain variation in a DV in terms of its degree of association with members of a set of IVs

SIMULTANEOUS MRA

Purpose is to derive the equation that most accurately predicts a criterion variable from a set of predictor variables
- Uses all predictors in a set
- Not designed to determine which predictor does the best job
- Instead, used to determine the best predictive equation using an entire set of predictors
Hierarchical MRA

- Similar to partial correlation analysis
- Allows as many variables to be partialed as the investigator needs
- Researcher creates a regression equation by entering variables to the equation
- Allows investigator to test hypotheses about relationships between predictor variables and a criterion variable with other variables controlled

Information Provided by MRA

- Multiple correlation coefficient (R): An index of the degree of association between the predictor variables as a set and the criterion variable
 - Provides no information about the relationship of any one predictor variable to the criterion variable
 - R^2 represents the proportion of variance in the criterion variable accounted for by its relationship with the total set of predictors

Information Provided by MRA

- Multiple correlation coefficient (R): An index of the degree of association between the predictor variables as a set and the criterion variable
 - Provides no information about the relationship of any one predictor variable to the criterion variable
 - R^2 represents the proportion of variance in the criterion variable accounted for by its relationship with the total set of predictors

Information Provided by MRA

- Regression coefficient: The value by which the score on a predictor variable is multiplied to predict the score on the criterion variable
- Represents the amount of change in Y brought about by a change in X

Information Provided by MRA

- Regression coefficients can be standardized (β) or unstandardized (B)
- If standardized:
 - βs for all IVs in an analysis are on the same scale
 - Have a mean of 0 and SD of 1
 - can be used to compare the degree to which different IVs in an analysis are predictive of the DV
Information Provided by MRA: Regression Coefficients

• If unstandardized:
 • Bs have same units regardless of the sample
 • coefficients can be used to compare the predictive utility of an IV across samples
 • t-tests can be used to determine whether these comparisons are statistically significant

Information Provided by MRA

Change in R^2

• used in hierarchical MRA
• represents the increase in the proportion of variance in the DV that is accounted for by adding another IV to the regression equation
• addresses whether adding that IV helps predict Y better than the equation without that IV

The Problem of Multicollinearity

Multicollinearity

• is a condition that arises when two or more predictor variables are highly correlated with each other
• can adversely effect results of MRA
• researchers must check to see if it is affecting their data
Effects of Multicollinearity
- Can inflate the standard errors of regression coefficients
- Can lead to nonsignificant statistical outcomes
- Research may erroneously conclude the criterion and predictor variables are unrelated
- Can lead to misleading conclusions about changes in R^2

Causes of Multicollinearity
- Including multiple measures of one construct in set of predictor variables
 - If using multiple measures, better to use a latent variables analysis
- Using variables that are naturally correlated
- Using measures of conceptually different constructs that are highly correlated
- Sampling error

Detecting Multicollinearity
- Create a correlation matrix of predictor variables before conducting MRA
 - Look for correlations ≥ 0.80
- Examine the pattern of correlations among several predictors
- Compute the variance inflation factor (VIF)
 - Look for $VIFs ≥ 10$

Dealing with Multicollinearity
- When planning a study, avoid including redundant variables
- Combine multiple measures of a construct into indexes
- If measures of conceptually-different constructs are highly correlated, use measures that show the lowest r
Dealing with Multicollinearity

- When source of multicollinearity is sampling error, collect more data to reduce error
- Delete IVs that might be source of the problem
 - Consider whether this results in valuable information loss
- Conduct a factor analysis to empirically determine which variables to combine in an index

MRA as Alternative to ANOVA

When using MRA in place of a factorial ANOVA

- consider curvilinear relationships
 - Arithmetic-square of the IV represents curvilinear effect
- use the arithmetic product of the scores for two IVs to represent their interaction
 - Be careful to avoid inducing multicollinearity (books on MRA explain how to do this)

MRA as Alternative to ANOVA

To use continuous IVs in ANOVA, they must be transformed into categorical variables

- Usually done with median split
 - People scoring above median classified as "high"
 - People scoring below median classified as "low"
- However, doing so creates conceptual, empirical, and statistical problems

MRA as Alternative to ANOVA

Problems are avoided by using MRA

- IV can be treated as continuous rather than categorical
- If also have other, categorical variables, use dummy coding
 - Assign values to experimental and control conditions
MRA as Alternative to ANOVA

- In ANOVA, assumption is that IVs are uncorrelated
 - Not an assumption of MRA
- If IVs are correlated, use MRA

Logistic Regression Analysis

- Used when DV is categorical
- Has same purpose as MRA, but does not assume that
 - variables are normally distributed
 - the relationship between the IVs and DVs are linear

Logistic Regression Analysis

- Produces an odds ratio (OR)
 - Describes the likelihood that a research participant is a member of one category rather than the others
 - OR of 1 indicates that scores are unrelated to membership in the DV categories
 - OR > 1 indicates that high scoring participants are more likely to be in a target group
 - OR < 1 indicates that high scoring participants are more likely to be in the other group

Multiway Frequency Analysis

- Allows a researcher to examine the pattern of relationships among a set of nominal level variables
 - Most familiar example: chi-square test of association
Multiway Frequency Analysis

- Loglinear analysis extends the principles of chi-square to situations in which there are more than two variables.
- Logit analysis is used when one of the variables in loglinear analysis is considered to be the IV.
 - Analogous to ANOVA for nominal level DVs.
 - Allows tests of main effects and interactions for IVs.

Data Types and Data Analysis

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Independent Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical</td>
<td></td>
</tr>
<tr>
<td>Chi-square Analysis</td>
<td>Logistic Regression Analysis</td>
</tr>
<tr>
<td>Loglinear Analysis</td>
<td></td>
</tr>
<tr>
<td>Logit Analysis</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Analysis of Variance</td>
<td>Multiple Regression Analysis</td>
</tr>
</tbody>
</table>