Populations and Samples

- Target population: The group of people to whom we want our research results to apply
- Study population: The people who meet our operational definition of the target population
- Research sample: The members of the study population from whom we collect our data

Sampling

- Target population: 6-10 YO children, (Students in Grades 1-5)
- Study population Elementary school children in Detroit area suburbs
- Participant sample: Students in particular elementary school(s) who have consented to participate in research study

Populations and Samples

 Generalizability: Extent to which findings from chosen schools describe the behavior of other elementary school children in those grades

Representativeness

- If the study population suffers from sampling error, the study population will not correctly represent the target population
- If researchers' operational definitions of the target population differ, findings might differ across studies
- Leads to apparent contradictions among results of studies

Sampling

- Two techniques can be used to draw a research sample from a study population
 - Probability sampling: Every member of the study population has a known probability of being selected for the research sample
 - 2. Nonprobability sampling: The probability of a person being selected is unknown

- Simple random
 - equal and independent probability of being chosen Leaves selection to chance so COULD theoretically end up with distorted sample
 - Sampling with Replacement
 - Once individual is selected, returned to pool Sampling without Replacement
 - Once individual selected, removed from pool Ensures no individual appears more than once in single sample
 - Probability of being selected changes with each selection

Probability Sampling

> Stratified random

- representation based on subgroups in population
 Identify specific subgroups (strata) to be included in sample
- Select equal random samples from each of preidentified subgroups, using simple random sampling procedures
- · Combine subgroups into one overall sample

Stratified Sample

- > 20 Christians
- > 20 Muslims
- > 20 Buddhists
- > 20 Atheists
- > 20 Jews
 - Good technique for examining and comparing subgroups
 But subgroup(s) may get overrepresented in sample

Probability Sampling

- Proportionate Stratified Random Sampling
 Identify set of subgroups
 - Determine what proportion of population corresponds to each subgroup
 - Obtain sample so that proportions in the sample exactly match proportions in overall population

Proportionate Stratified Sample

- > 60 Christians
- 15 Muslims
- 10 Buddhists
- 8 Atheists
- 7 Jews
 - Problems?

Probability Sampling

> Proportionate Stratified sampling

Sample of 100 Staff o	f General Hospital, Str POPULATION		ratified by Position SIMPLE RANDOM SAMPLE	PROPORTIONAT STRATIFIED SAMPLE	E
POSITION	N	Percent	n	n	TO THE POPULATION
Administrators	15	2.88	1	3	-2
Staff physicians	25	4.81	2	5	-3
Intem physicians	25	4.81	6	5	+1
Registered nurses	100	19.23	22	19	+3
Nurse assistants	100	19.23	21	19	+2
Medical technicians	75	14.42	9	14	+5
Orderlies	50	9.62	8	10	-2
Clerks	75	14.42	5	14	+1
Maintenance staff	30	5.77	3	6	-3
Cleaning staff	25	4.81	3	5	-2
Total	520	100.00	100	100	
Randomly select 3 of 15 Note: Traditionally, N symb The simple random sample administrators, staff physici, each position.	olizes the nu overrepreser	mber in the pr	opulation and <i>n</i> represents sing assistants, and medica	the number in the I technicians but u	nderrepresents

Quota Matrix

	Women			Men		
	Hetero- sexual	Lesbian	Bisexual	Hetero- sexual	Gay	Bisexual
Young Adult						
Middle Age						
Older Adult						

Probability Sampling

- Systematic sampling: Researcher starts with a sampling frame and selects every *nth* name after random start
 - n = the proportion of the frame to be sampled
 - Sampling interval N/sample size

 - Inverse of sampling ratio
 Begins like simple random, but no longer random after selection of first participant
 Ensures high degree of representativeness but principle of independence is violated
- Can also be stratified (e.g., selecting every nth woman and *nth* man)

Probability Sampling

Must avoid periodicity bias Occurs when some characteristic appears with the same pattern as the sampling interval E.g., N = 80, n = 10, every 8th unit is a

corner unit

TABLE 8.1 Problems with Systematic Sampling of Cyclical Data				
CASE				
1	Husband			
2ª	Wife			
3	Husband			
4	Wife			
5	Husband			
64	Wife			
7	Husband			
8	Wife			
9	Husband			
10*	Wife			
11	Husband			
12	Wife			

Probability Sampling

- > Cluster sampling: Groups or clusters of people meeting definition of the study population are identified
 - Random sample of clusters is taken
 - Can also use multistage cluster sampling · Clusters are sampled within clusters

Nonprobability sampling

- More common than probability sampling
- Convenience sampling (also called haphazard sampling)
- Researchers study whoever is accessible Are easy to acquire
 - Are inexpensive
 - However, researcher does not know the degree to which the sample represents the target population
 - So results may not apply to that target group

1936: F.D. Roosevelt Defeats Landon

Nonprobability Sampling

- > Purposive sampling: Researchers use their judgment to select the membership of the sample based on research goals
 - Used when researchers want to study typical or critical cases

Non-probability Sampling cont.

Hidden Populations

Chain-referral methods

- Snowball Sampling Target group members provide names of others
- Key Informant Sampling Information from knowledgeable individuals
- Targeted Sampling
- Where do they congregate? Respondent-driven Sampling Incentives

Snowball sampling

Statistical Power

Focuses on Type II (beta) error

- The probability of incorrectly concluding that the IV had no effect
- Power is represented by 1-beta
 - The probability of not making a Type II error
 - Tests with insufficient power increase the chances of erroneously concluding IV had no effect
- Power can be increased by ensuring you have an adequate sample size

How large should a sample be?

Increasing size of probability sample reduces sample variance But, as sample variance for nonprobability sample cannot be computed, concern about bias grows as sample gets larger b/c larger sample size will magnify any bias due to errors in sample selection

Think navigation error - as distance travelled increases, so does magnitude of error The smaller the population, the larger

The similation of the sample o

TABLE 8.3 Sample Size of a Random Sample for Different Populations with a

POPULATION	SAMPLE	% POPULATION
SIZE	SIZE	IN SAMPLE
200	171	85.5%
500	352	70.4%
1,000	543	54.3%
2,000	745	37.2%
5,000	960	19.2%
10,000	1,061	10.6%
20,000	1,121	5.6%
50,000	1,160	2.3%
100,000	1,173	1.2%

Rule of thumb - ~ 50 cases for each subsample

Sample Size

- To determine adequate sample size, it is necessary to know:
 - what effect size you are trying to detect
 - what alpha level you will use
 - whether you will use a one-tailed or a two-tailed test
 - what level of power you want

Approaches to Determining Effect Size

- Find your minimum critical effect size
 - What is the smallest effect you consider important to the theory or application?
- > Use average effect size found in previous research
- Can often be found in meta-analyses
- For the set of the se

Sample Size

- N needed for power of .80 with two-tailed tests assuming $\alpha = .05$
- One-sample Tests • 7.85/ d²
- Two-sample Tests
 7.85/ r²
 - d = effect size, standardized mean difference between two groups or between sample and population
 - r^2 = proportion of variance accounted for

Setting Alpha

- The smaller the alpha
 - $^{\circ}$ the lower the statistical power
- the larger the sample needed to achieve given level of statistical power
- Two-tailed tests have lower statistical power than one-tailed tests

Participant Recruitment

- Passive recruitment methods
- Study is made available and researcher waits for participants to discover it
- Appropriate if privacy is a concern
- Also useful if it is difficult to identify potential participants
- May not know who has characteristics of interest
- Can advertise website on sites frequented by respondents one hopes to recruit
- Can also use search engine features to increase chances that respondents find your site

Participant Recruitment

- Active recruitment
- Researcher identifies people who have particular traits or interests and contacts them
- Can post a research announcement about research on a listserv, newsgroup, or social media site
 - Best to get approval of site moderator, if one exists

Email recruitment

- Participants are sent an email and asked to participate
- More effective if
 - comes from university address is preceded by short email requesting participation nonresponders receive follow-up
- Trolling (e.g., using a computer program to gather email) is considered unethical
 Invades privacy
- However, can use public directories
- Can also use organizational email lists
- Need to request permission

Use of Incentives

- For participants not receiving course or extra credit, can use other incentives to increase participation, such as
 - access to electronic information
 - games
 - e-books
 - gift certificates
 - lottery (chance to win cash or prizes)

Participant Recruitment

• Websites should include an "expiration date"

The last date on which data will be collected

Prevents frustrating potential participants

If site is listed on a research directory, notify

Mturk through Amazon (issues with repeat

administrator when data collection has ended

- Paying incentives requires collecting at least some identifying information
 - May reduce willingness to participate in study on sensitive issues

Participant Recruitment

- Web researchers have less control over recruitment than do traditional researchers
 - URLs can be shared without the experimenter knowing it
 - Sometimes study sites "go viral"
 - May result in more diverse sample
 - Can increase chances of sabotage

IPs)

